787 research outputs found

    On the Interaction Between Cosmic Rays and Dark Matter Molecular Clouds - II. The Age Distribution of Cosmic Ray Electrons

    Full text link
    We explore further the proposal in paper I of this series that the confinement time of cosmic ray nuclei in the Milky Way is determined by their interaction with dark matter molecular clouds rather than by their escape from the halo, as is assumed in conventional models of cosmic ray propagation. The same proposal can be made for cosmic ray electrons. This proposal leads to a specific age distribution for the electrons which is in agreement with Tang's (1984) observations of the electron spectrum at high energies but not with Nishimura et al's (1980) earlier data, which lead to a flatter spectrum. However, the simplest leaky box and diffusion models disagree with both sets of data so that our trapping model is supported if Tang's data are correct.Comment: 7 pages, no figures, using MNRAS latex styl

    Gamma ray astronomy and baryonic dark matter

    Get PDF
    Recently, Dixon et al. have re-analyzed the EGRET data, finding a statistically significant diffuse Îł\gamma-ray emission from the galactic halo. We show that this emission can naturally be explained within a previously-proposed model for baryonic dark matter, in which Îł\gamma-rays are produced through the interaction of high-energy cosmic-ray protons with cold H2H_2 clouds clumped into dark clusters - these dark clusters supposedly populate the outer galactic halo and can show up in microlensing observations. Our estimate for the halo Îł\gamma-ray flux turns out to be in remarkably good agreement with the discovery by Dixon et al. We also address future prospects to test our predictions.Comment: 9 pages, 1 figure included, to appear in ApJ 510, L103 (1999

    High-energy Îł\gamma-ray emission from GRBs

    Full text link
    GRBs are nowadays a rather well understood phenomenon in the soft (KeV-MeV) Îł\gamma-ray energy band, while only a few GRBs have been observed at high photon energies (E_{\gamma} \ut > 1 GeV). It is also widely recognized that GRBs accelerate protons to relativistic energies and that dense media are often present nearby the sources. Within this framework we compute in detail the high-energy Îł\gamma-ray flux from the decay of neutral pions produced through the interaction of accelerate protons with nucleons in the surrounding medium. We also take into account the local and intergalactic Îł\gamma-ray absorption. The presence of magnetic fields around the GRB sources causes the deflection of the accelerated protons and so a temporal spread of the produced high-energy Îł\gamma-rays with respect to the signal in the soft Îł\gamma-ray band. Moreover, we analyze the possibility to detect the Îł\gamma-ray signal in the GeV-TeV energy range by the ARGO detector under construction in Tibet.Comment: 9 pages, 7 figures, abstract shortened, to appear in Astronomy and Astrophysic

    Gamma ray emission from a baryonic dark halo

    Full text link
    A recent re-analysis of EGRET data by Dixon et al. has led to the discovery of a statistically significant diffuse Îł\gamma-ray emission from the galactic halo. We show that this emission can naturally be accounted for within a previously-proposed model for baryonic dark matter, according to which dark clusters of brown dwarfs and cold self-gravitating H2H_2 clouds populate the outer galactic halo and can show up in microlensing observations. Basically, cosmic-ray protons in the galactic halo scatter on the clouds clumped into dark clusters, giving rise to the observed Îł\gamma-ray flux. We derive maps for the corresponding intensity distribution, which turn out to be in remarkably good agreement with those obtained by Dixon et al. We also address future prospects to test our predictions.Comment: 22 pages, 2 figures, slightly shortened version. to appear in New Journal of Physic

    Binary brown dwarfs in the galactic halo?

    Get PDF
    Microlensing events towards the Large Magellanic Cloud entail that a sizable fraction of dark matter is in the form of MACHOs (Massive Astrophysical Compact Halo Objects), presumably located in the halo of the Galaxy. Within the present uncertainties, brown dwarfs are a viable candidate for MACHOs. Various reasons strongly suggest that a large amount of MACHOs should actually consist of binary brown dwarfs. Yet, this circumstance looks in flat contradiction with the fact that MACHOs have been detected as unresolved objects so far. We show that such an apparent paradox does not exist within a model in which MACHOs are clumped into dark clusters along with cold molecular clouds, since dynamical friction on these clouds makes binary brown dwarfs very close. Moreover, we argue that future microlensing experiments with a more accurate photometric observation can resolve binary brown dwarfs.Comment: Latex file. To appear in Mont. Not. R. Astr. So

    Constraints on Cold H_2 Clouds from Gravitational Microlensing Searches

    Get PDF
    It has been proposed that the Galaxy might contain a population of cold clouds in numbers sufficient to account for a substantial fraction of the total mass of the Galaxy. These clouds would have masses of the order of 10^{-3} Solar mass and sizes of the order of 10 AU. We consider here the lensing effects of such clouds on the light from background stars. A semianalytical formalism for calculation of the magnification event rate produced by such gaseous lensing is developed, taking into account the spatial distribution of the dark matter in the Galaxy, the velocity distribution of the lensing clouds and source stars, and motion of the observer. Event rates are calculated for the case of gaseous lensing of stars in the Large Magellanic Cloud and results are directly compared with the results of the search for gravitational microlensing events undertaken by the MACHO collaboration. The MACHO experiment strongly constrains the properties of the proposed molecular clouds, but does not completely rule them out. Future monitoring programs will either detect or more strongly constrain this proposed population.Comment: 36 pages, 9 figures, 1 table, typos corrected, minor change

    MACHOs as brown dwarfs

    Get PDF
    Recent observations of microlensing events in the Large Magellanic Cloud suggest that a sizable fraction of the galactic halo is in the form of Massive Astrophysical Compact Halo Objects (MACHOs). Although the average MACHO mass is presently poorly known, the value ∌0.1M⊙\sim 0.1 M_{\odot} looks as a realistic estimate, thereby implying that brown dwarfs are a viable and natural candidate for MACHOs. We describe a scenario in which dark clusters of MACHOs and cold molecular clouds (mainly of H2H_2) naturally form in the halo at galactocentric distances larger than 10-20 kpc. Moreover, we discuss various experimental tests of this picture.Comment: To appear in the proceedings of the workshop DM-ITALIA-9

    Signatures of rotating binaries in micro-lensing experiments

    Full text link
    Gravitational microlensing offers a powerful method with which to probe a variety of binary-lens systems, as the binarity of the lens introduces deviations from the typical (single-lens) Paczy\'nski behaviour in the event light curves. Generally, a static binary lens is considered to fit the observed light curve and, when the orbital motion is taken into account, an oversimplified model is usually employed. In this paper, we treat the binary-lens motion in a realistic way and focus on simulated events that are fitted well by a Paczy\'nski curve. We show that an accurate timing analysis of the residuals (calculated with respect to the best-fitting Paczy\'nski model) is usually sufficient to infer the orbital period of the binary lens. It goes without saying that the independently estimated period may be used to further constrain the orbital parameters obtained by the best-fitting procedure, which often gives degenerate solutions. We also present a preliminary analysis of the event OGLE-2011-BLG-1127 / MOA-2011-BLG-322, which has been recognized to be the result of a binary lens. The period analysis results in a periodicity of \simeq 12 days, which confirms the oscillation of the observed data around the best-fitting model. The estimated periodicity is probably associated with an intrinsic variability of the source star, and therefore there is an opportunity to use this technique to investigate either the intrinsic variability of the source or the effects induced by the binary-lens orbital motion.Comment: In press on MNRAS, 2014. 8 pages, 4 figures. On-line material available on the Journal web-pag
    • 

    corecore